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REVIEW OF CRITICAL FLOW RATE, PROPAGATION OF PRESSURE

PULSE, AND SONIC VELOCITY IN TWO-PHASE MEDIA

by Yih-Yun Hsu

Lewis Research Center

SUMMARY

For single-phase media, the critical discharge velocity, the sonic velocity, and the

pressure pulse propagation velocity can be expressed in the same form by assuming

isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid

due to the existence of interfacial transports of momentum, heat, and mass. Thus, the

three velocities should be treated differently and separately for each particular condition,

taking into account the various transport processes involved under that condition. This

report reviews various attempts to predict the critical discharge rate or the propagation

velocities by considering slip ratio (momentum change}, evaporation (mass and heat

transport}, flow pattern, etc.. Experimental data were compared with predictions based

on various theorems. The importance is stressed of the time required to achieve equi-

librium as compared with the time available during the process, for example, of passing

a pressure pulse.

INTRODUCTION

In a system involving two-phase mixtures, such as a space fuel tank, a nuclear reac-

tor, or a cryogenic storage tank, it is necessary to know the rate of discharge in case

there is accidental leakage, the rate of pressure propagation in case there is a pressure

surge, or the sonic velocity to determine the onset of flow instability. All of these prop-

agation velocities, namely, the critical discharge velocity Uc, the propagation rate of a

small pressure pulse a, and the sonic velocity c (which is the propagation rate of a con-

tinuous train of acoustic waves of small amplitude}, are closely related. In fact, for

single-phase flow, they are almost synonymous. However, in a two-phase flow system,

nonequilibrium, nonhomogeneity, and other complicating factors are present. Under

such conditions, these three terms cannot be assumed mutually interchangeable. The



objective of this report is to review the experimental andanalytical studies on these
propagation rates in a two-phase medium andto discuss the relation anddifferences of
these three rates. In the following sections, the theories andexperimental findings re-
ported in the literature for eachtype of propagationvelocity are examined, andthe con-
trolling parameters are discussed. Emphasis is placed on the effect of the flow pattern
in determining the propagation rates. We first discuss the problem associated with crit-
ical flow, then those problems associatedwith the other two phenomena,and finally the
relation betweenthe three rates.

A

a

a,b,c,d,e

B

C

C M

C

C m

c O

Cp

c;
c v

D

F1, F 2

Fp

G

h

h o

K

K 1 , Ig-2

k

2

SYMBOLS

attenuation coefficient

pressure propagation velocity

coefficients in eqs. (25) to (30)

dispersion coefficient

specific heat

coefficient related to virtual mass

sonic or acoustic velocity

acoustic velocity of the mixture

sonic velocity of gas

specific heat of gas at constant pressure

specific heat of suspension at constant pressure

specific heat of gas at constant volume

diameter

coefficients in eq. (72)

force on a particle

flow rate, pU

enthalpy

stagnation enthalpy

wave number

real and imaginary parts of wave number, K = K 1 + iK 2

slip ratio



L length

N coefficient in eq. (36)

n coefficient in eq. (52)

nb bubbles per unit volume

P pressure

Pr Prandtl number

Qp heat-transfer rate in particle
R radius, also gas constant

Rd drop radius

R° radius of an unperturbed bubble

S entropy

T temperature

t time

U velocity

Uc critical velocity

v specific volume

x quality of vapor

xs mass fraction of suspension
Z mass of air to mass of water ratio

z distance in longitudinal direction

void fraction

/3 dispersion coefficient

7 ratio of specific heats

thermal conductivity

viscosity

u kinematic viscosity

ut thermal diffusivity

p density

7 relaxation time

f_ dimensionless frequency



w frequency

Subscripts:

c critical

D drag

d displacement or drag

E equilibrium

e exit

fg liquid-vapor transition

g gas

H homogeneous

HT homogeneous, isothermal

L liquid

m maximum

mom momentum

o stagnation

s suspension

t thermal

W waY e

z at z-location

Superscript:

' _/ap

PROPAGATION AND DISCHARGE RATES IN SINGLE-PHASE MEDIA

AND THEIR RELATIONTO TWO-PHASE FLOW

First we consider the propagation of an infinitesimal pressure pulse in a single-

phase medium. Following the approach by Shapiro (ref. 1, p. 46), consider a control

volume around the wave front traveling at velocity c in a channel of constant cross sec-

tion A (fig. l(a}). From the Lagrangian point of view, an observer traveling with the

wave front would see the surroundings in the way described in figure l(b). Neglecting the



Wave front moving

with velocity c:

_-,,\\\\\\\\\\\\\_\\-,;
p+® __'q p

dU ._ Stationary p

P +dP Ic gas U-O
,\\\\'x\"-.\'x\"..\\\\\'x\"-.'x\\\\\\\ ",."."-. "..

Stationary r Control
wave front-,, / surface

p+® ,r,? p
c :_._u Zll
P+dP I ILIJ P

,\x.-x\x.\',,\',,'xx.\'-.'x'-, \\x,\\\\\\\\%_\ \_

_I_P + dP-_-___. p__

_ dU

la) Observer at rest.

t--P + dP__= p

/
•, A" m-

;1o° c - dU

m

(b)Observer moving withwave fronf,which

isequivalenttosuperposing a leftwardve-

Iocity c on flow of (a).

Figure 1. - Propagation of an infinitesimal pressure pulse (ref. 1).

viscous shear and the head effects and assuming one-dimensional flow yield the momen-

tum equation

or

The continuity equation is

or

Combining equations (1) and (2) yields

The subscript s

AlP - (P + dP)] =w[(c - dU)- c]

A dP=pcA dU

pc = (p+ dp)(c- dLO

dP dU (2)

p c

denotes that the processes are isentropic since the pressure and tern-

(3)

perature changes are vanishingly small and thus are nearly reversible.
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Now consider the isentropic flow through a passage of varying cross section as shown

in figure 2. Again following Shapiro (ref. 1, p. 75) gives the enthalpy equation as

U 2
h =h+--

o 2

or

(4)

From the isentropic condition

Thus,

The continuity equation is

T dS =0 =dh-dP

P

(5)

or

pAU = GA = constant

dp + __dA+ __dU= 0 (6)
p A U



Combining equations (4), (5),and (6) gives

dA dP

A p

or, when expressed in terms of the mass flux G,

G p2

From equation (8) it is obvious that the maximum mass flux occurs when dG/dP

or when

(7)

(8)

is zero

Gmax = P d_ = d_vP
(9)

This maximum flow rate occurs at the throat of a nozzle where dA/A = 0. The Gma x

is commonly called the maximum discharge rate or critical flow rate. A comparison of

equations (2) and (9) shows that for single-phase flow critical flow velocity and the sonic

velocity are given by the same expression. Furthermore, since in the sonic velocity

analysis the pressure pulse is assumed to be infinitesimally small and the process is

very close to equilibrium and reversible, it does not matter whether there is a single

pressure pulse or a train of small waves.

SPECIAL PROBLEMS PECULIAR TO PROPAGATION AND

DISCHARGE RATES INTWO-PHASE FLOW

As mentioned in the last section, the analyses on critical flow rate or sonic velocity

c are based on the assumption that the flow is one-dimensional, single-phase (hence

homogeneous), in equilibrium, and isentropic. In the two-phase flow, all these assump-

tions are subject to violation. The coexistence of two phases in various flow patterns

makes homogeneous flow a near approximation only under the special condition of highly

dispersed flow. When two phases are separated, such as in annular or slug flow, the

homogeneous assumption is no longer true. Also, when there is strong slip between

phases, the homogeneous assumption may not be true even in the case of bubbly or mist

flow. When the flow is undergoing strong interfacial mass transfer due to evaporation,

7



or interfacial momentum transfer due to flow acceleration, the equilibrium and isentropic

concepts are violated. Here we note that the concept of equilibrium covers both thermo-

dynamic and hydrodynamic (in terms of shear stress) equilibria. If the flow channel has

a very wide angle of divergence, the one-dimensional assumption is in danger. Further-

more, since the interfacial transports are involved, a relaxation time is required for the

flow to adjust to a finite disturbance. Thus, a single pulse or a series of pulses would

impose different effects on the two-phase flow. Therefore, in two-phase flow, all those

factors that are in disagreement with these assumptions used for the idealized single-

phase approach necessitate the reexamination of each assumption for each specific case.

TWO-PHASECRITICALFLOW

General

Since the derivation for critical flow as shown in the last section is for isentropic

flow, it is no longer applicable for two-phase flow when strong interracial transports are

involved and the processes are highly nonequilibrium. Furthermore, the concept of den-

sity is totally different for a flowing two-phase mixture. Thus, an alternative derivation

should be used, so that the isentropic restriction can be removed and a new compress-

ibility concept can be used.

Starting with the momentum equation, neglecting the hydrostatic head and viscous

dissipation term, and assuming one-dimensional steady state, we have

pUdU- dP (I0)
dz dz

Combining this equation with equation (6) again gives

d_pf.±
p \u2- dP/

(11)

except that dp/dP is no longer held at constant entropy as used in equation (7). The

critical flow rate at the throat is again

Gc = P d_pP



which is the general form for homogeneous flow. Now, if the slip ratio of the two phases

is not unity, the momentum equation should be changed to (ref. 2)

Ix L] - dP (12)Gd gg+(1-xlUdz

Since for a critical flow the criterion is

_G
-- = 0 (137
_P

we can combine the last two equations into

-l=G--_-a [XVg_P + (1 - X)UL] (14}

at a given z. The liquid velocity and vapor velocity are related by the slip ratio

which is defined by

Ug = kU L

The mass flow rates can be expressed as

(1- a)U L
(I - x)G -

v L

_Ug _ULk
_ -- _

Vg Vg

k,

(15}

(16a)

(16b)

From these equations, when G is eliminated,

XVg

k(1 - X)VL+ XVg

Combining equations (16b) and (17) gives G as

G

[k k ]U L(1 - X)VL+ XVg

(17)

(18)

9



Eliminating UL betweenequations (18)and (14)gives

1 (19)

Gc- 3 _k(1-X)VL+XVgJ[Xk+(1-X_zo_eeL k

which is the general form of the critical flow equation. The single-phase critical flow

equation (eq. (9)) is different from the two-phase critical flow equation (eq. (19)) in the

number of variables. In equation (9). only the variation of Vg with P needs to be

known. In two-phase flow, the variables Vg, x, and k can be functions of P and the
problem is to describe the relations. Fauske (ref. 3) pointed out in his discussion

on pressure pulse propagation that there are three interfacial transport processes to be

considered in a two-phase flow situation. This concept can also be applied to the critical

flow. The three interfacial transport processes considered by Fauske are the following:

(1) Interfacial heat transfer. The heat-transfer rate between the gas phase and the

surrounding liquid or solid phase determines the term OVg/OP in equation (19).
(2) Interfacial momentum transfer. This transfer determines how fast each phase is

accelerated, thus controlling the term Ok/aP in equation (19).

(3) Interfacial mass transfer. This transfer determines the rate of evaporation or

condensation, that is, the term Ox/OP in equation (19).

In summary, the discussion on critical flow shows the following: for a single-phase

flow, only the volume change _Vg/OP is of concern; for a two-component, two-phase

flow, both momentum and heat transfer or _k/OP and OVg/_P should be considered; for

a one-component, two-phase flow, all three processes or _k/_P, _Vg/_P, and _x/_P
should be considered. The whole effort in this field of two-phase critical flow can be

viewed as an attempt to describe these three transport processes in light of specific in-

terfacial configurations (flow pattern) and the time available for reaching the equilibrium

of each or all of these processes. Comprehensive reviews on this subject can be found in

reports by Fauske (ref. 4) and Henry (ref. 2).

Theories on Critical Flow

Many theories on critical flow have been proposed over the years, and some of them

are quite similar. We will only cover a few which have been reported more recently. In

the following sections, we discuss three models which propose various ways of deter-

mining slip ratio and change of equilibrium quality and one model which, in addition to

slip ratio consideration, tried to include the nonequilibrium effect in the analysis.

10



Fauske's theory (ref. 4). - Fauske suggested that in two-phase flow the maximum

discharge rate may not necessarily be accompanied by a shock front. He proposed that at

the critical flow condition the absolute value of the pressure gradient at a given location

is maximum but finite for a given flow rate and quality, or mathematically

I Im x mum
G,x

(20)

In two-phase critical flow, G is fixed when x, P, and k are fixed. Since in computing

_P/_z both x and G are fixed, P is a function of k only. Therefore, Fauske says

that (_P/_Z)ma x should occur when

0_k

It was shown by Fauske that to maximize _P/_z the conditions to be satisfied are

and

_---f: 0 (21)

ak

_Vm°m - 0 (22)

_k

where f is the friction factor and Vmom, the term in braces in equation (19), is called

by Fauske "the momentum specific volume" to represent the volume weighed by momen-

tun of each species:

Ik(1 - X)VL + XVg] [xk + (1 - x)_

Vm°m = k
(23)

Using equations (22) and (23) shows that at critical flow

v4k = (24)

II



Fauske further assumed that the flow is isenthalpic and follows the saturation line.

From this assumption, together with equation (24), one can obtain the terms _x/_P,

_k/_P, and aVg/OP as follows:

ax 1 (0hf 0hfg /- + x -- (25a)
_P hfg \_" _P /sat

(25b)

_VL - 0 (25c)

ak _ 1 aVg

aP 2 V_VLVg bP

(25d)

From equations (20), (24), and (25) the G c can be calculated. The theoretical prediction

of the critical flow rate as a function of quality and pressure for a stream-water system

is shown in figure 3. (Note that in fig. 3 two sets of plots using quality and pressure as

abscissa are superimposed and the reader can use either of them. )

Fauske used annular flow as an illustration. His analysis is not limited to annular

flow only and has been compared favorably to experimental data over a wide range of

quality (0.01 < x < 1.0) (see ref. 5), which certainly covers a wide variety of flow

patterns.

Fauske's theory predicts the experimental flow rate data of Falleti (ref. 6), Moy

(ref. 7), and DaCruz (ref. 8) successfully for the range 0. 1 < x < 1.0. However,

Fauske's theory consistently over predicted the slip ratio k when compared with more

recent data of Klingebiel (ref. 9), Fauske (ref. 10), and Henry (ref. 2). Since Fauske's

flow rate equation made use of his expression for slip ratio, it may indicate that the flow

rate prediction is not very sensitive to the value of slip ratio.

Moody's model (ref. 11). - Moody's analysis is based on an annular flow model with

uniform axial velocities of each phase and equilibrium between two phases. The major

difference of Moody's approach from that of Fauske's is in the expression for the slip

ratio k. While Fauske obtained k by minimizing the momentum volume 0Vmom/ak ,

Moody maximized the flow rate with respect to both k and P:

12
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(26)

The resulting expression for k is

=0 (27)

k
C

vgll/3

\VL/

(28)

The use of this expression for k leads to the critical flow rate equation

where

_/-2gc(V L + XVfg)
%--w ;_:2_ (29)

a = kv L + X(Vg - kv L) (30a)

b= 1+X(lk2m -_._)
(30b)

d

2Sfg Sfg k4Sfg J

" I

(s,,k2)
+X

k4Sfg

(30c)

e=[Sfg_S-_g')+tSfg")Sg \Sfg/ ] fg -Sfg_S_g')J (30d)

and the superscript ' denotes a/_P. All properties are those at local static pressure

at the maximum flow rate condition.

Moody's equation was compared with experimental results of Faletti (ref. 6), Moy

(ref. 7), Fauske (ref. 4), and Zaloudek (ref. 12). It appears that his equation slightly

overpredicts the maximum discharge rate in the low quality range (x < 0.1), predicts

14



well in the moderate quality range (0.2 < x < 0.6), and underpredicts in the higher qual-
ity range (x > 0.60) (see fig. 4).

Levy's model (ref. 5). - Most assumptions used by Levy are the same as those pos-

tulate by Moody - namely, thermal equilibrium, separated phases with each represented

by a uniform velocity, and the neglect of frictional and hydrostatic head. Levy departed

from the two previous theories in his method of calculating the slip ratio k. In the pre-

vious two analyses, the k was determined by some maximization principle, while Levy

used his method of momentum exchange which was originally developed to predict void

fraction (ref. 13). In this approach, the momentum of each phase was considered sep-

arately, and the phase pressure drops were equated. From this method the quality x

can be expressed as a function of the void fraction and phase densities:

a(l-2a)+ ot¢(l-2cd 2 12PL(I- a)2+ a(l-2a) 1
L Pg (3 I)

X=

+ Ol

2PL (1 - a 2) + a(1 - 2a)

\%/

The momentum specific volume Vmo m in equation (23) can be expressed as a function of

quality x and pressure P. Consequently,

-aVm°m I dP +aVrnom I

dVm°m _'P Ix ax Ipax
(32)

Since for isentropic flow the entropy change dS is zero,

(33)

_Sg + _SLJax -_ (l-x)

I _ oPJ_-P S (Sg - S L)

(34)

Combining equations (32), (33),and (34)gives

15
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 Vmom = _ _P \ _P/]

_P Is \ _P /x \ ax /p (Sg-SL)

(35)

The terms _Vmom/aPIx and _Vmom/aXIp can be obtained from equations (23) and (31).

Levy calculated critical flow rates for isentropic and isenthalpic processes and showed

that there is not much difference between these two processes, as shown by figure 5

where the critical flow rate for both processes is plotted as a function of quality at var-

ious pressures. However, there are two significant differences as compared with

Fauske' s model:

(1) Fauske's slip ratio k = __dg/vL is independent of quality while Levy's slip ratio

increases with quality.

(2) Fauske's critical flow rate decreases monotonically with quality while Levy's ex-

hibits a slight maximum for the low pressure steam-water system with a maximum lo-

cated around a quality fraction of 0.01.
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In general, however, Levy's and Fauske's predicted critical flow rates are quite close

except in the high pressure regime.

At this point one should pause to note that the previous three models assume sep-

arated flow in thermal equilibrium. The only difference is in their way of determining

slip ratio. As has been noted previously, the predicted critical flow results are not very

different. Among them Moody's is more interesting to practicing engineers since in his

paper the critical flow rate was also presented as a function of the stagnation condition

(see fig. 6). This figure is convenient for direct use without knowing the local static con-

dition. However, it was pointed out by Neusen in his discussion of Moody's paper

12 000

tO 000

E

j_ 80oo

60oo

E

_ 4ooo
E

E

N 2 000

(_4_,, Stagnation pressure,

4,\x¢ ' %

Satu rated liqu id _/ ._ '\ Satu r!|

--boundary _. % %_ _ _1,,_ po

"":_t4_ _k__X'_, (boa nd:r_ va r

0 200 400 600 800 1000 1200 1400

Stagnation enthalpy, ho, Btu/Ibm

Figure 6. - Maximum steam-water flow rate and local stagnation properties according

to Moody's model (ref. 11L

(ref. 11) that when the stagnation condition was used for calculation, Moody's analysis

overpredicted the experimental results for steam-water in nozzle flow. In any case,

since in all three models the flow was assumed to be in equilibrium, the departure from

equilibrium, which has been recognized in many experiments, has not been accounted for.

To this end, we introduce a later model by Henry which attempted to account for this

nonequilibrium effect empirically.

Henry's model (ref. 2) for low quality, high pressure cases. - To take the nonequi-

librium effect into consideration, Henry assumed that the real quality is related to the

equilibrium quality x E by the following equation in which he inserted an unknown empir-

ical parameter N:

19



x = NkxE (36)

Combining this equation with equation (19), neglecting the smaller terms, and using a

simplifying assumption, we have

2 -I
G c = (37)

Nx E + VgN\ 0P/ho + vgxe aNh o h o

where h ° refers to constant stagnation enthalpy.

Henry further argued that from experimental data the N term varies much slower

than the pressure variation with distance near the throat; thus, ON/aP = 0. Further-

more, when the perfect gas law is assumed for the isothermal case for simplicity, equa-

tion (37) can be reduced to

Gc = - 1 (38)

But since (0XE/aP)ho is not convenient to use, Henry used (OXE/OP) S for computation
purposes.

Since the expression in the bracket is nothing other than 1/G2,H, E (i. e., for the

case of homogeneous, equilibrium flow (eq. (19)), we have

°c
Gc,H,E

(39)

For low qualities where 1 - x _ 1, the relation between quality and void (eq. (17))

becomes

x = k a VL

1- aVg

Henry combined equation (36) with equation (40) and obtained

(40)

2O



av L
n = (41)

x E (1 - a)Vg

From equation (41), the empirical value of N could be obtained from void data. The

Nem p can be correlated to the equilibrium quality by

N = 20x E

But because of the assumptions used to neglect some of the terms, Henry's analysis is

restricted to low void flows; thus, it should be valid only for flow with low quality or

under high pressure.

Later Henry (ref. 14) further elaborated on his analysis so that for a pipe flow

N = 20x E

N=I

for x <0.05_

(
for x-_0.05 J

(i.e., in higher void, thermodynamic equilibrium is achieved), and since he observed a

strong L/D effect(tobe discussed later), he restricted the previous analysis to the

case where L/C > 12. --.- ....

For nozzle flow, where the flow pattern and pressure gradients are different from

that of the pipe flow, Henry and Fauske (ref. 15) proposed that the real quality be deter-

mined by using N as

(42)

(42)

x E
N-

0.14

N=I

-%

for xE < 0. 14 1

Jfor xE :>0.14

(43)

The critical flow rate determined from this nonequilibrium model is compared with those

based on the equilibrium and frozen model (where quality does not change with distance)

shown in figure 7. In the same reference, Henry and Fauske (ref. 15) also proposed cor-

rections for subcooled conditions.

The application of Henry's analysis for low quality flow (ref. 2) has been tested by

Bergles and Kelly (ref. 16) for two-phase flow under the heating condition. They found

that for equilibrium quality no less than 0.01 the critical flow rate for the heating case

is comparable to that of Henry's for the adiabatic case. However, for very low quality

(x < 0.01), the adiabatic correlation underpredicts the data for 0. 003 < x < 0. 025 and
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Figure 7. - Comparison of critical flow predictions and experimental data of refer-

ence 1.5. Pressure, PO = .500psia.

overpredicts for x < 0. 003. Apparently, under the heating condition, the wall heat flux,

as well as depressurization, cause flow quality to deviate from the equilibrium value.

It should be noted that in Henry's method the critical flow rate can be determined

from a stagnation condition; thus, it is convenient to use. However, the empiricism

they used to determine the quality coefficient N restricts their analysis to the range of

conditions from which the data were drawn. More general theory to verify this empir-

icism is yet to be developed.

ExperimentalObservations

In addition to comparing experimental results to the theoretical predictions given in

the last sections, there are several experimental observations that should be discussed

in more detail.

Comparison of experimental results with simplified solutions. - Smith (ref. 17) pre-

sented various highly simplified solutions and compared their results with experimental

data for hydrogen, nitrogen, and oxygen. The purpose was to discern the limit of appli-

cability of these simplified solutions. Basically, the fluid can be in equilibrium or non-

equilibrium (frozen), the flow can be homogeneous or separated, and the process can be

isentropic or isenthalpic. The three pertinent equations are the following:

Homogeneous equilibrium model:
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G c --_

hfg

Vfg

dP
[(1 - x)v L

1/2

]J
(44a)

Homogeneous frozen model:

[(1--_) ] 1/2

x C + C L

Gc= "Pg_ P____

[(1-_-_)C + CL xvgvg

Vapor choking model (i. e., flow controlled by vapor phase only):

(44b}

G c - aPg ag (44c)
X

where a is the void fraction, which can be determined from the Martinelli-Nelson

correlation.

The comparison of theoretical prediction with experimental result indicates the fol-

lowing area of application:

(1) Low quality, adiabatic flow in a short tube. The data are bracketed by the homo-

geneous equilibrium and homogeneous frozen solutions.

(2) Adiabatic, high quality flow. The data can be predicted by the separated vapor

choking model; that is, the flow acts like an all-vapor flow. A similar dependence of

critical flow rate on quality was reported by Brennan, Edmond, and Smith (ref. 18}.

Slip ratio as function of quality. - In both Moody's and Fauske's analyses the slip

ratio is independent of quality. In Levy's model, the ratio increases with quality. It was

shown by Henry (ref. 2) that for a 50-psia steam-water system the experimental slip

ratios based on measured void and equilibrium quality k E are of the order of 1 to 10,

which is not near any one of those analytical models. Furthermore, the theories did not

even predict the trend of the variation (fig. 8). Thus, the question of slip ratio is still
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unanswered. Further research is needed. However, as discussed previously, the crit-

ical flow rate apparently can be predicted without much knowledge of slip ratio.

Effect of geometry. - A two-phase flow critical discharge rate is affected by the

geometry of the passage, including the length to diameter ratio, the entrance effect, and

the shape of the nozzle:

(1) L/D effect. Depending on the length of the tube or nozzle, the flow could behave

differently. According to Henry (ref. 14) the following phenomena have been observed for

a sharp-edged entrance with subcooled or saturated one-phase flow at the entrance

(fig. 9):

0 < L/D < 3

3 < L/D < 12

L/D = 12

L/D > 12

Liquid flow is in the form of free streamline jet.

Pressure is essentially constant. The jet begins to breakup.

the interface mass transfer is low.

Breakup of jet is completed. The flow ceases to be annular.

Pressure begins to drop drastically.

However,

A similar phenomenon was observed by Fauske (ref. 19) who showed that as L/D is in-

creased the flow rate approaches Fauske's model of equilibrium flow with slip. The

length effectwas also observed by Edmonds and Smith (ref. 20). They showed that the

flow rate for a short nozzle is higher than that for a long nozzle.
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(2) Entrance effect. The previous description of separated flow as varying with L/D

is restricted to subcooled or saturated one-phase flow entering the tube through a sharp-

edged entrance. For a dispersed saturated two-phase flow entering an orifice, the flow

will stay dispersed. In this case, Henry and Fauske (ref. 15) proposed the use of the

empirical relation

Real flow = 0.84 (critical flow in ideal nozzle)

as obtained for the case of single-phase compressible flow in an orifice.

(3} Two-dimensional effect. Henry (ref. 2) found that flow passing through a 7 ° di-

vergent nozzle behaves differently from flow through a 120 ° divergence angle nozzle.

The axial pressure variation near the exit for the 7 ° nozzle appears to be more like those

for single-phase flow, while in the 120 ° nc zle a back pressure increase causes upstream

pressure and exit pressure to rise. Henry c utends that for the 120 ° nozzle, the flow in

the divergent section is undergoing a strong radial expansion and there is a pressure gra-

dient in the radial direction. Hence, if one measures the throat pressure in a nozzle with

a large divergent angle, the radial pressure gradient will cause error in the pressure

reading.

PROPAGATIONOF PRESSUREPULSESANDWAVES

The topics of propagation of a pressure pulse and pressure waves have been impor-

tant in the study of acoustics. To two-phase flow engineers, the interest has been cen-

tered on the effect of the propagation rate on critical discharge and on the onset of flow

instability. Many papers have been published on this subject, some dating back to the

1930's. Good reviews can be found in the paper by Gouse and Evans (ref. 21) and by

Moody (ref. 22). We will only touch on more recent contributions.

In the earlier years, it appeared that two-phase flow pressure pulse sonic velocity

and critical discharge velocity were considered to be the same entity, since this was a

valid approach in single-phase flow. However, as shown in the previous sections, the

critical flow rates for two-phase mixtures should be treated differently from those for the

single phase due to the various interfacial transport processes involved. Similarly, the

propagation velocities for single-phase mixtures should not be applicable to two-phase

mixtures, since in the ideal single-phase problem, the perturbations were assumed small

and equilibrium was assumed to be maintained all the time. Furthermore, in two-phase

flow, one should not confuse pressure pulse propagation velocity with the sonic velocity.

The basic differences between these two propagation rates lie in the different forms of

perturbation and the different time scale as compared with the relaxation time of the fluid

to reach equilibrium state. For the propagation of a single pressure pulse, the wave

front is usually steep. The fluid subjected to such a moving front does not have time to
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equilibrate to the rapid change in state, and thus it usually can be considered to be ap-

proximated by the frozen state. Therefore, for the propagation rate of a single pulse,

one only worries about the state of change while the pulse is passing and no concern is

given to states after the pulse has passed. On the other hand, sound is propagated

through continuous waves of small amplitude. The fluid is subject to a periodical change

of pressure and has to respond to such periodical changes. The extent of nonequilibrium

is dependent on the period of the wave. If the frequency is low or the amplitude is infin-

itesimal, an equilibrium state can be approached. Conversely, for a wave of high fre-

quency or high amplitude, fluid response will be lagging.

In order to facilitate discussion, we first address ourselves to the subject or prop-

agation of a single pressure pulse and then take up the sonic velocity.

Pressure Pulse Propagation

Before going into a detailed discussion of each kind of propagation velocity, it is in-

structive to derive a general form of the propagation equation. If we travel with the wave

front and establish a control volume around the wave front, as we did with equation (3),

the equations for two-phase mixture (corresponding to eqs. (1) and (2) for single phase)

are

and

a [ pg dug+ dUt.]: dP (45)

ad [Otpg + (1- c_)PL]= Otpg dUg + (1 - c_)PL dU L (46)

Combining equations (45) and (46) results in

a2 = dP (47)

d[ pg +(I-  )PL]

Since c_ is function of quality x and the slip ratio k (eq. (17)), equation (47) can be

expanded to read

a2= [(1 - X)pg +XPL]2
(48)

xP 2 + (1- X)pg\.--_--] (PL- g \aP] + -
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The terms apg/aP, apL/aP, ax/aP, and ak/aP are determined by interfacial heat
transfer, mass transfer, and momentumtransfer, respectively, just as discussed in the

section on critical flow.

The propagation characteristics of compression and rarefaction pressure pulses

were studied experimentally by Grolmes and Fauske (ref. 23) and by Barclay, Ledwidge,

and Cornfield (ref. 24). In reference 24, it was found that compression waves travelled

faster than the rarefaction wave. The wave shapes were studied in both references 23

and 24. The wave shapes from reference 23 are shown in figure 10. From these wave

Distance 2-3 (61.5 in. )
°2P - AT

Q_

Tl

Compress ion

ction

AT

Time

Figure I0. - Superposition of represenlative oscilloscope pressure

traces at locations 2 and 3 for compression and rarefaction pres-

sure pulses in low void traction steam-water mixtures (ref. 23L

profiles Grolmes and Fauske concluded that the mass transfer, or ax/aP term of equa-

tion (48), can be neglected; that is, the frozen state can be assumed. But it is important

to note that the pressure wave propagation in a flow system is different from the propaga-

tion in a stagnant two-phase medium (ref. 24). This difference is due to the fact that the

term ak/aP is very much a function of flow pattern. Different expressions for ak/aP

can be derived depending on whether the flow pattern is stratified (_k/aP ¢ 0) or dis-

persed flow (ak/aP -0). This effect, which was first recognized by Henry, Grolmes,

and Fauske (ref. 25), is illustrated in figure 11. Later, Henry (refs. 26 and 27) pro-

posed a series of refined models for propagation velocity for various flow patterns to take

into account the virtual mass effect on ak/aP as well as heat-transfer effect on _Vg/aP.
When momentum transfer is considered, Henry included the virtual mass which is the in-

ertial effect of the accelerating gas and its surrounding liquid. The problem for each

flow pattern is now discussed.
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Figure 11. - Measured and calculated pressure wave propaga-
tion velocity in air-water mixtures at 25 psia (ref. 25).

Bubbly flow. - In his earlier model, Henry assumed that ak/aP = O. However, he

later proposed that the virtual mass term of the gaseous volumes should be included:

aP aUg PL(u aUg aUL/T, - pgUg- -÷ g--£-- (50)

where the last term is the virtual mass term and can be related to the change of slip ratio

k. The constant C M varies depending on the geometry of the gas phase. Thus, he as-

sumed that C M is dependent on the void fraction. He further assumed that the gas com-

pressibility term is also a function of void. Then using data from the air-water system

with P = 25 psia and void fractions up to 0.5, he empirically correlated the correction

28



factor which includes the effects of interfacial momentum transfer

heat transfer _v_/_P:
g.

a

aH T

- 1.035 + 1.671a

C M and interracial

(5 I)

where

with

aHT , the value for homogeneous, isothermal conditions, is

(52)

n _

(1 - x)C L + XCpg

(1 - x)C L + XCvg

The empirical equation was checked against data for the 10 to 285 psia pressure range

and found to be successful.

Annular flow, smooth interface (ref. 25}. - Since the interface is relatively small

compared to dispersed flow and assumed to be smooth, there is no significant momentum

transfer or mass transfer between phases. Each phase is accelerated separately. Under

such conditions the change of slip ratio with pressure is

The resulting propagation equation is

or

(54)
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(55)

Annular flow, wave interface (ref. 27). - Under this condition the virtual mass of

gas flowing over wavy surfaces is approximated by flow over a surface made of contin-

uous rows of half cylinders:

dUL (IJ dUg-u dUL_
dP _ p LU L Pg
dz dz Vg _ L d-z--]

(56)

where the last term on the right side is the virtual mass of the liquid filament in the ac-

celerating gas or vapor stream. The resulting propagation is

Mist flow, two components.

-- = (57)
ag

- The momentum equation is

dUL Pg(u dUg dULldP _ P LUL _ UL
dz dz 2 g "_z _ ]

(58)

assuming spherical drops.

a

ag

The resulting equation for propagation is

1/2
2ot2(1- o_)p L

1+

(1 + c_)pg

a 2 + a(1 - a)PL

Pg

for a > 0.5.

Mist flow, one component. - In a one-component system, with drops finely dis-

persed, the mass transfer between phases over such large interfacial area has to be con-

sidered. Henry (ref. 27) argued that for the compression wave the frozen state can be

assumed since subcooled liquid and superheated vapor conditions generated by the wave

are fairly stable. Thus, the expressions for the two-component system are valid

(eq. (40)). However, for a rarefaction wave, the vapor becomes subcooled and the liquid
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becomes superheated. When the wave front passes the liquid phase is assumed to adjust

from the metastable state at an equilibrium rate. If isoentropic processes are assumed,

the mass-transfer rate can be shown as

_x : _ (1 - x____)_SL

_P Sfg aP

Inclusion of this mass-transfer term results in the propagation velocity

(60)

2a2(1- a)PL
1+

a2 = (1 + a)pg

a 2 + a(1 - a)P_ a(1 - a) _SL

+PL
a2 XSfg _P

g

(61)

The need for different expressions for compression and rarefaction waves is consistent

with the experimental observation of Barclay et al. (ref. 24) that the compression wave

travels faster than the rarefaction wave.

Slug flow. - For the slug flow, the time required for a pressure pulse to sweep

across the length of a slug is

t= LL+Lg

aL ag

and the void fraction is

Lg+ L L

Thus, the propagation velocity is

a aL
-- = (62)

ag aa L + (1 - a)ag

A similar approach has been taken by Bowles and Manion (ref. 28) in dealing with the

problem of propagation of acoustic waves. This is discussed in the next section. A sum-
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mary of the models proposed by Henry et al. has recently been published in a single re-

port (ref. 29}.

Sonic Wave Propagation

As mentioned previously, sonic waves differ from pressure pulses in two respects:

(1) The pressure fluctuation is small. (Theoretically, sonic waves ought to be lim-

ited to very small fluctuations, but in reality the amplitude has to be large enough to avoid

being completely attenuated within short distances. )

(2) The waves are continuous. The propagation, attenuation, and dispersion of acous-

tic waves in a two-phase system has been an important subject of research in the field of

acoustics. A good survey can be found in the paper by Gouse and Evans (ref. 21) and

Gouse and Brown (ref. 30}. However, most of the research was performed in a two-

phase medium with no flow conditions. As Gouse and Evans pointed out, very little re-

search was done in two-phase flow systems. Theirs is one of the few exceptions. Al-

though the flow condition may be expected to bring in new variables, such as slip ratio, it

is reasonable to assume that the basic phenomena observed in the nonflow condition also

occur in the flow condition. We will thus proceed to examine the various important param-

eters according to two basic two-phase configurations - namely, droplet suspension and

bubbly mixture.

Droplet suspensions (gas-liquid system}. - Since the inertia of a liquid suspended in

the gas phase is higher than the inertia of the gas, the time for the displacement of liquid

under the pressure waves should be considered.

A model was proposed by Temkin (ref. 31) to account for the response of suspension

with pressure and temperature changes. In this analysis, the suspensions are considered

to move with the pressure waves according to the Stokes law

Fp = 6_uR(U P - U} (63)

The heat is transferred by conduction between the gas and the suspension. The equation

for the heat transfer is that of conduction from an infinite body to an immersed sphere:

% = 4_ R_(Wp - T} (64}

The use of equations (63} and (64} is the approximation of oscillatory state equation by

steady-state equation with the oscillatory terms neglected. This approximation is valid
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if the relaxation time to the wave period ratio is small or

where

0<TDW_ 1, Ttw=0

2R2pL(drag relaxation time)

9pg

3 (cpLhPrgTD (thermal relaxation time)
= \Cpg /

(65)

(66)

(67)

In Temkin's analysis, mass transfer is assumed to be absent. Continuity equations,

energy equations, and momentum equations are then written for both the gas phase and

the dispersed phase with the interfacial transport expressed as equations (63) and (64).

The responses of temperature, velocity, and densities to a small perturbation of pressure

are then determined.

Under this system, the perturbation changes with time and distance according to

i(K 1z-wt) -K2t
e e

Thus, a positive K 1 means that the amplitude of the perturbation attenuates with the

distance z. Temkin found that an attenuation coefficient

A _

is function of the relaxation times VD

2CoK 2 w_ D
A -

XsW 1 + w272D

and

2CoK 2

Xs¢0

_t and the mass fraction of suspension Xs:

+ t
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Another term of interest is the dispersion coefficient

S _

c p L_w

(69)

This term expresses the difference of sonic velocity c in a particle suspension from

that in the air c o as a function of the mass fraction of suspension Xs, the relaxation

times 7's, and the frequency. These equations show that the acoustic velocity in a sus-

pension is a strong function of frequency and drop size. Experimental data for A and B

for a suspension of alumina particles in air were shown to compare well with the predic-

tion (fig. 12). Later, Temkin and Dobbins (ref. 32) applied this theory to a nitrogen-

oleic acid system and discussed the effects of the wall influence, gravitational settling

and particle size distribution. The last two effects were found to be small.
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(a) Attenuation by alumina particles in air.

Figure 12. - Attenuation and dispersion of sound waves in air with suspended particles

(ref. 31). Ratio of specific heat at constant pressure and velocity for air, "¢= Cp/Cv -
i

1.4; specific heat ratio of solid to gas, Cp/Cp : 1.0; Prandtl number, Pr: 0.71.
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Figure 12, - Concluded.

Bubbly mixture (gas-liquid two-component system). - Most of the earlier work on

acoustic velocity was based on the assumptions of (1) homogeneous distribution of small

bubbles, (2) the velocity being primarily a function of void fraction, and (3) the acoustic

velocities being the single-phase values of the liquid and vapor phases C L and Cg. One

example is that of Hsieh and Plesset (ref. 33). In their analysis, the two-phase homoge-

neous mixture is assumed to be represented as a uniform medium with physical proper-

ties synthesized from the constituent phases and weighted according to void fraction and

quality. This analysis is limited to the small bubble sizes such that the bubble radius is

much smaller than the wavelength and the frequency is well below the bubble resonance.

Using such a model they were able to show that the gas compression is essentially iso-

thermal and the acoustic velocity can be approximated as

rl 7
PL L (1 - X)pgJ
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where

2_aP_P
Cg

_Pg Pg

since the process is isothermal. In this equation the acoustic velocity is independent of

wave frequency. A similar analysis was performed by McWilliam and Duggins (ref. 34)

to show the effects of pressure and bubble size on sonic velocity in bubbly mixture. They

showed that sonic velocity decrease with increasing bubble size and decreasing pressure.

In reference 35 Van Wijngaarden derived equations to show there is a dispersion of the

acoustic wave; that is

K
w = (71)

(1 + K2) 1/2

where w and K are frequency and wave number, respectively. In reference 36 Van

Wijngarden showed further that the wave propagation in two-phase bubble mixture can be

as an analogy to water waves. 1He showed that for high gas content (Ron_/3-- _ 1}treated

the dispersion is not small, where Ron_/3 is the ratio between bubble radius and bubble

distance. Thus, the acoustic velocity is not only a function of void but also of frequency

and bubble size. Karplus (ref. 37) made experimental measurements of sound velocity in

a gas-liquid mixture for the void range of 1 to 67 percent, with and without detergent. He

found that the velocity is strongly dependent on frequency, void fraction, and pressure,

as shown in figures 13(a) and Co). It was also found that there is a Cmi n with respect to

Void fraction,
o,

l Mass of air V / _elcOent

z - M_r
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qa)Sound velocityas funcIionofpressure. (b)Velocilyof sound in waler containing
airbubbles.

Figure13. - Sound velocib/asalfeciedby pressureand frequency(ref.37}.
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the void fraction when a = 0.5. The effect of the detergent appears to be inconclusive.

The attenuation of sonic waves in bubble mixtures of carbon dioxide and water was

experimentally shown by Bowles and Manion (ref. 28). They found that in a freshly

poured club soda or fresh seltzer water the sonic waves are greatly reduced as compared

with an old solution which has already lost some of the bubbles.

Vapor-liquid system. - In the last two sections we discussed the studies of acoustic

velocity in gas-liquid mixtures. In the boiling system where liquid and vapor coexist,

the change of pressure causes condensation or evaporation. Thus, the mass transfer is

the additional complexity to be considered. There are far fewer studies on vapor-liquid

acoustic velocity than their counterparts In the gas-liquid system. Karplus (ref. 38)

made computations of sound velocity in mixtures of water and steam, assuming thermo-

dynamic equilibrium. Acoustic velocity is determined from _P/_p along constant en-

tropy lines. The calculation showed that the velocity is lower than in single-phase water

or steam, and there is a discontinuity in velocity at both the saturated liquid and satu-

rated vapor lines. A small discontinuity in velocity exists when the dry steam is transi-

tioned to wet steam with just a trace of liquid. At the other end of the range, the discon-

tinuity is very drastic, and the velocity in a low void mixture is two orders of magnitude

lower than that of liquid with any void. This is especially true near the triple point. It

may be noted that the experimental values of C are higher than the analytical prediction

based on the equilibrium assumption. Clinch and Karplus (ref. 39) analyzed the propaga-

tion of pressure waves in a hydrogen liquid-vapor system (of droplet suspension). In

this study, they took into account the effects of viscosity and thermal diffusivity on sonic

velocity. They concluded that for the mass transfer the relaxation time ratios ¢_R_/u t
2

and WRd/U should be considered. For very low frequency, equilibrium can be assumed

and the existing equation for gas-liquid can be used (i. e., C = f (void)). For very high

frequency, where there is no time for mass and heat transfer, the acoustic velocity ap-

proaches that of the dominating phase. But for intermediate frequency, the acoustic ve-

locity is dependent on quality, the relaxation time ratio, and the spacing between them.

An example is shown in figure 14.

The importance of relaxation time on mass transfer has also been shown by Hsu and

Watts (ref. 40). In their study of the compressibility of stationary vapor bubbles under

pressure pulsation, they found both analytically and experimentally that the controlling

compressibility is wR2/vt . The bubble radius change in response to a pres-factor for

sure pulse is

(72)
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Figure 14. - Soundvelocity in hydrogen mixture against uR_ at atmospheric pressure
(ref. 39). Critical quality, xc =0.375.

In this equation FI, F 2 are groupings of properties, _ = wR2/vt , and Pg is the partial

pressure of the gas. In this study, it was found that a trace of noncondensable gas in the

vapor phase can significantly reduce the compressibility. Thus, for a vapor-liquid sys-

tem, insufficient time for reaching equilibrium (i. e., high frequency) and a trace of gas

can both cause an increase in the acoustic velocity. A subsequent unpublished work by

Watts and Hsu shows that for a vapor bubble slipping with respect to the liquid, the com-

pressibility is even higher. Thus for a two-phase mixture in flowing condition with slip,

the sonic velocity should be even lower than that in stationary two-phase medium.

RELATION BETWEEN CRITICAL DISCHARGE RATE, PRESSURE

PROPAGATION RATE, AND SONIC VELOCITY

General Comments

In the previous sections we have discussed the various approaches used to treat the

three propagation or discharge rates (Gc, C, and a) in two-phase mixtures. In this sec-

tion, we attempt to discuss the relation between these three terms.

In the INTRODUCTION we mentioned that in single phase the three terms G c, C,

and a are closely related to the isentropic equilibrium compressibility of the fluid. In

two-phase flow or two-phase mixture, these three terms are still shown to be determined
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by the compressibility of the mixture, with the important difference from the single-

phase case being that the fluid is no longer under equilibrium and homogeneous conditions.

Much of the effort reviewed in this report was directed to determining how much two-

phase fluids deviated from the equilibrium and homogeneous states. The nonhomogeneity

is determined from knowledge of the flow pattern and the extent of nonequilibrium is de-

termined by knowing the momentum, energy, and mass transport processes. In general,

with a larger interfacial area (which is a function of flow pattern) and a longer time avail-

able in comparison with relaxation time, an equilibrium state is more closely approached.

But for each propagation rate or velocity, the process has to be examined separately.

Relation BetweenCritical Discharge and Pressure Propagation

The critical discharge rate and the pressure propagation rate should be related if

one considers the existence of a stationary wave front in a discharging flow. At the wave

front, the pressure propagation rate moving upstream is balanced by the outflow of the

discharging fluid. However, it was shown by Fauske (ref. 4) that the critical discharge

rate could not be equated to the single-phase sonic velocity of either the liquid or vapor.

Isbin et al. (ref. 41) suggested that the pressure was propagated through a liquid film.

Moody (ref. 22) postulated that during critical discharge of a separated flow (i. e., an-

nular flow) the pressure pulse travels at supersonic speed in vapor and subsonic speed

in liquid. One source of confusion is the misuse of all the concepts for single-phase on

the two-phase flow system. In the real situation, there is a great deal of interracial

transport which affects slip ratio, quality, etc., and thus the two phases should not be

considered separately. These interfacial transports tend to adjust the system, at least

partially, to accommodate the change in pressures. The time available for this accom-

modation should be associated with the characteristic time L/U. Thus a longer channel

should be closer to equilibrium situation than a short channel. This is demonstrated in

figure 15. Furthermore, it should be remembered that during the discharging process,

the flow acceleration makes an adjustment to equilibrium even more difficult. Consider-

ing all these factors, it is difficult to assign a right set of local properties and parame-

ters such as local quality, local slip ratio, etc. at the wave front to make the critical

discharge flow rate equal to the local pressure propagation rate but of opposite direction.

Furthermore, for a two-phase flow, the choke condition may not always be met at the

throat. For example, some unpublished data obtained from Gutierrez of Lewis Research

Center has shown that through a transparent divergent nozzle the wave front for a two-

phase flow is a little downstream of the throat.
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Figure 15. - Maximum discharge rates of saturated water for O.25-inch
inside diameler tube (ref. 19).

Relation Between Sonic Velocity and Pressure Pulse Propagation

As to the relation between the sonic velocity and the propagation velocity of the sin-

gle pressure pulse, it was mentioned before that the imposed pressure disturbances are

different - one being a continuous wave and another being a single impulse. The differ-

ence is analogous to the steady periodic heating of a block by a cyclical change in surface

temperature as compared with momentarily changing the surface temperature to a new

level. The responses to these two kinds of disturbance are certainly different, both in

depth of penetration and in lagging time. For two-phase flow, it involves the time re-

quired for the interfacial transport to respond to the changing boundary condition. It is

easier to define the relaxation time for a sonic wave propagation, such as shown in equa-

tions (66) and (67). When the single pressure pulse is imposed, the shape of the pulse

(i. e., the steepness and magnitude of the pulse) should really be included in considering

the extent of nonequilibrium involved.
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CONCLUSIONS

The discussions in previous sections can be summarized as follows:

1. In the single-phase system, critical discharge rate and the pressure pulse prop-

agation rate (and sonic velocity} were of the same expression even though they were de-

rived from different approaches. This is due to the common basic assumptions of the

equilibrium, isentropic process. In two-phase systems this basic assumption of the

isentropic process under equilibrium condition is no longer valid. Consequently, the

three propagation or discharge rates are no longer expressed in similar ways. Any

temptation to treat them as interchangeable items should be strongly cautioned against.

2. The compressibility associated with various propagation or discharge processes

is strongly affected by the nonequilibrium and nonhomogeneous state usually existing in

two-phase flow. The extent of nonhomogeneity is determined by the flow pattern while

nonequilibrium is determined by the interfacial transport processes and the time avail-

able to relax toward equilibrium.

3. In the existing analyses, the effect of the flow pattern has been recognized and

considered. The time factor is still not fully accounted for. For sonic velocity, the

characteristic time is the period of the wave; for pressure propagation it is the duration

of the wave front, and for critical discharge it is the time it takes the fluid to travel

through the discharge channel. A study of the effect of these time factors on the extent of

nonequilibrium could be fruitful.

Lewis Research C enter,

National Aeronautics and Space Administration,

Cleveland, Ohio, March 28, 1972,

113-31.
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